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INTRODUCTION

A standard tool of reliability analysis used at NASA-JSC is the event tree.
An event tree is simply a probability tree, with the probabilities determining the
next step through the tree specified at each node. The nodal probabilities are
determined by a reliability study of the physical system at work for a particular
node. The reliability study performed at a node is typically referred to as a fault
tree analysis, with the potential of a fault tree existing.for each node on the event
tree.

When examining an event tree it is obvious why the event tree/fault tree
approach has been adopted. Typical event trees are quite complex in nature,
and the event tree/fault tree approach provides a systematic and organized
approach to reliability analysis.

The purpose of this study was two fold. Firstly, we wanted to explore the
possibility that a semi-Markov process can create dependencies between sojourn
times (the times it takes to transition from one state to the next) that can
decrease the uncertainty when estimating time to failures. Using a generalized
semi-Markov model, we studied a four element reliability model and were able to
demonstrate such sojourn time dependencies. Secondly, we wanted to study the
use of semi-Markov processes to introduce a time variable into the event tree
diagrams that are commonly developed in PRA (Probabilistic Risk Assessment)
analyses. Event tree end states which change with time are more representative
of failure scenarios than are the usual static probability-derived end states.

BLOCK DIAGRAM ANALYSIS

Our study begins with a look at a four component reliability block diagram.
Figure 1 shows the component block diagram.

Figure 1: Four Component Block Diagram
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This block diagram represents a system in which initially all four components are
working independently of each other. Given that there are 4 components in the
system, and two possible states for each component (working versus failed),
there are a total of 16 possible states in which the system may reside at any
given time. These 16 states are related to each other by the flow diagram
illustrated in Figure 2. Figure 2 shows the possible paths to overall failure of the
system, which is realized at nodes 8, 10, 12, 14, and 16. The 16 nodes of the
flow diagram are defined in Table 1. The symbol "O" refers to an operating state,
and the symbol "F" refers to a failed state.

Figure 2: Flowgraph of Operating and Failure States (Failure states in
boldface).

TABLE 1: OPERATING AND FAILURE STATES

Component 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 1 1 1 1 1 I 1 1 0 0 0 0 0 0 0 0
B 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
C 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
D 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

8rate O O O O O O O F O F O P O F O F

In effect, this four node diagram has incorporated into it the notion of a
generalized semi-Markov process (GSMP), that is, the future node is predicted
not only by the present node (as in a Markov Process), but also by a set of time
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generators (think stopwatches) running in the present node and indicating the
time to transition to a future node. Inherent in a GSMP is the notion of

competition among the transition times, with the smallest transition time
specifying the future node. A fundamental question is, can we use the node and
time components to develop an improved reliability estimate? The first part of
our investigation is to explore the concept of path dependence within the flow
diagram.

Multiple runs through the flow diagram presented in Figure 2 are simulated
using the S programming language with summary statistics presented in Table 2
and Table 3.

Table 2: PATH MEAN TIMES TO Table 3: PARTIAL PATH MEAN TMES TO
FAILURE FAILURE

The Weibull Model Weibull Model
Path MTTF S.E. Prob Partial Path MTTF S.E.

1-2-10 0.99 0.01 0.11 1-2-4 0.99 0.01
1-9-10 1.00 0.01 0.00 1-2-6 1.00 0.00

1-2-6-14 1.00 0.00 0.12 1-2 1.00 0.01
1-2-6-8 1.00 0.01 0.00 1-9-11-15 1.22 0.17
1-2-4-8 0.99 0.01 0.10 1-9-13-15 1.33 0.18

1-2-4-12 0.99 0.01 0.10 1-9-11 1.21 0.18
1-3-4-8 0.99 0.01 0,10 1-9-13 1.23 0.18

1-3-4-12 0.99 0.01 0.10 1-9 1.23 0.18
1-3-7-8 1.00 0,01 0.00 1-3-7-15 1.23 0.18

1-3-11-12 1.00 0.01 0.00 1-3-11-15 1.23 0.18
1-5-6-8 1.00 0.00 0.00 1-3-4 0.99 0.01

1-5-6-14 1.00 0.00 0.00 1-3-7 1.23 0.18
1-5-7-8 1.00 0.00 0.00 1-3-11 1.23 0.18

1-5-13-14 1.14 0.11 0.03 1-3 1.12 0.18
1-9-11-12 0.99 0.01 0.00 1-5-7-15 1.24 0.17
1-9-13-14 1.13 0.11 0.03 1-5-13-15 1.33 0.18

1-3-7-15-16 1.23 0.18 0.11 1-5-6 1.00 0.00
1-3-11-i5-16 1.23 0.18 0,11 1-5-7 1.23 0,17
1-9-11-15-16 1.22 0.17 0.00 1-5-13 1.23 0.18
1-5-7-15-16 1.24 0.17 0.00 1-5 1.14 0.18
1-5-13-15-16 1.33 0.18 0.03
1-9-13-15-16 1.33 0.18 0.03

Overall 1.08 0.16 1.00

In this simulation the time to failure of each component is assumed to have a
Weibull distribution, with components A and B having their time to failure
concentrated at a point by using a shape parameter of 200, while components C
and D have their time to failure spread out by using a shape parameter of 3. The
purpose for such a choice of shape parameters is to model a system where a
specific path occurs with inter-arrival times that are almost fixed, while other
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paths contain inter-arrival times with greater variation. This is an attempt to
model real-world events where success at a node occurs at precise points in
time, while failure can occur over a broader interval of time. The overall system
time to failure is estimated by a weighted mixture of each path's time to failure.

Of interest is the apparent existence of path dependence within Table 2.
What appears to be true from Table 2 is that the shorter paths have shorter mean
time to failure. Table 3 is a look at the information gained by knowing the nodes
passed through as one traverses the flow diagram. Note that passing through
node 2 virtually guarantees a mean time to failure of the system of 1.
Unfortunately, the standard error associated with the mean time to failure along
any path is sufficiently large as to mask general distinctions among time to failure
along arbitrary paths.

We examine the correlation among inter-arrival times _,T2, T3,]4, and the
time to failure TTF, by means of correlation matrices. Inter-arrival times (sojourn
times) represent the times the process resides at a particular node before
transitioning to the next node. In effect, the inter-arrival times for a particular
path through the flow diagram are the differences between the failure times of
components failing in sequence, with the first inter-arrival time being the time to
failure of the first component. Hence, the time to failure (TTF) for a given path is
the sum of the inter-arrival times along the path. Since all paths for the given
reliability block diagram must have at least two component failures for the system
to fail, there are at least two inter-arrival times on every path. A three by three
matrix shows the correlations among the inter-arrival times along all paths (Le.
for paths of length 2, 3, or 4), as well as the time to failure:

corr(_, T2,rTF) ; 1 7 .

A four by four matrix shows the correlations among the inter-arrival times along
all paths containing at least three inter-arrival times (i.o. for paths of length 3 or
4),, as well as the time to failure:

l -.26 -.23
corr(T_,T2,T3,TTF ) =

1 - .147

A five by five matrix shows the correlations among the inter-arrival times along all
paths containing four inter-arrival times (Le. for paths of length 4), as well as the
time to failure:
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-1 -1 .39 -.04 .78

1 -.39 .04 -.78

corr(T_, T2, T3, T4, TTF) = 1 -. 10 .64

1 .43

1

Of interest in these correlation matrices is the exponential decay of
correlation that occurs between inter-arrival times. In the last matrix we see that

T4 shares no correlation with the previous inter-arrival times. This loss of

correlation will have an interesting consequence in the following section.

In an attempt to utilize the correlations present in the inter-arrival times
and the time to failure (TTF) of the system, we construct a series of linear
regression models and present the results in Table 4.

Table 4: PREDICTIVE MODELS
Model 1: TTF ~ T.1

Value Std. Error t value Pr(>ltl)
(Intercept) 2e+000 8e-003 2e+002 0e+000

T.1 2e+000 1e-002 2e+002 0e+000
Residual standard error: 0.8 on 99998 degrees of freedom
Multiple R-Squared: 0.3

Model 2: TTF ~ T.1 + T.2
Value Std. Error t value Pr(>ltl)

(Intercept) 0.12 0.02 7.40 0.00
T.1 3.35 0.02 186.96 0.00
T.2 1.94 0.02 96.04 0.00

Residual standard error: 0.7 on 99997 degrees of freedom
Multiple R-Squared: 0.3

Model 3: TTF ~ T.1 + T.2 + T.3
Value Std. Error t value Pr(>ltl)

(Intercept) -2.04 0.03 -66.64 0.00
T.1 5.62 0.03 189.95 0.00
T.2 4.65 0.03 137.68 0.00
T.3 1.70 0.03 55.98 0.00

Residual standard error: 0.5 on 88225 degrees of freedom
Multiple R-Squared: 0.5

Model 4: TTF ~ T.1 + T.2 + T.3 + T.4
Value Std. Error t value Pr(>ltl)

(Intercept) 0e+000 0e+O0O 4e+000 0e+000
T.1 4e+000 0e+0O0 4e+014 0e+000
T.2 3e+000 0e+000 3e+014 0e+000
T.3 2e+000 0e+000 2e+015 0e+000
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ABSTRACT

Most probabilistic risk assessment (PRA) and reliability methods commonly used
at Johnson Space Center (JSC) make the assumption that component failures in
a system are independent random occurrences. There are some exceptions
(e.g. modeling common cause events), but because of the mathematical
complications that occur when full dependency is assumed, it is not done by the
standard models.

This study investigates the use of models in which dependencies among the
failure states has been considered via a variety of processes. Our study
included: 1) analysis of a general block component diagram for path dependence
and inter-arrival time correlations; 2) analysis of correlation among inter-arrival
times on a small, generic event tree; 3)a semi-Markov approach designed to
provide updated reliability predictions for general event trees.
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T.4 le+000 0e+000 3e+015 0e+000

Residual standard error: le-014 on 29902 degrees of freedom
Multiple R-Squared: 1

Model 5:T.2 ~ T.1
Value Std. Error t value Pr(>ltl)

(Intercept) 7e-001 le-003 6e+002 0e+000
T.1 -7e-001 2e-003 -5e+002 0e+000

Residual standard error: 0.1 on 99998 degrees of freedom
Multiple R-Squared: 0.7

Model 6:T.3 - T.1 + T.2
Value Std. Error t value Pr(>ltl)

(Intercept) 9e-001 le-003 7e+002 0e+000
T.1 -9e-001 2e-003 -6e+002 0e+000
T.2 -1e+000 2e-003 -6e+002 0e+000

Residual standard error: 0.06 on 88119 degrees of freedom
Multiple R-Squared: 0.8

Table 4 (CONTINUED): PREDICTIVE MODELS

Model 7:T.4 ~ T.1 + T.2 + T.3
Value Std. Error t value Pr(>lt])

(Intercept) 6e-001 2e-001 4e+000 2e-004
T.1 -4e-001 2e-001 -2e+000 2e-002
T.2 -4e-001 2e-001 -2e+0O0 2e-002
T.3 1 -2e-001 2e-002 -le+001 0e+000

Residual standard error: 0.2 on 30151 degrees of freedom
Multiple R-Squared: 0.009

We have considered models in which TTF is regressed upon the inter-
arrival times as well as models in which inter-arrival times are regressed on prior
inter-arrival times. In models designed to predict TTF, we see in general that the
multiple R-squared values are small and hence we gain poor predictive value
from the model. The only model which predicts TTF well is model 4, which says
knowing all the inter-arrival times allows one to predict TTF. Since TTF is the
sum of all inter-arrival times, one hardly finds this regression model useful. In
models 5 and 6, we see more promise in gaining predictive ability, with multiple
R-squared values improving. In model 7 we see the artifact of the loss of
correlation previously mentioned. The "return to randomness" of the inter-arrival
times masks our ability to gain predictive power.

We consider another method of extracting predictive power from the
simulation in terms of a simulated reliability curve. Figure 3 presents an
empirical reliability curve for the data used in the simulation of the block diagram
and the empirical mixture pdf of the distributions for the four components.
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In Figure 3 we have plotted a 95% confidence interval on the empirical reliability
curve, which appears as a very narrow band about the mean reliability curve.
This simulation ran 100,000 tests replicated 50 times (hence 5,000,000 path
simulations) to generate the lower and upper confidence intervals. The empirical
mixture pdf for the block diagram is calculated using data from one of the 50
replications. We see the reliability curve generated from the simulation is quite
accurate in terms of the confidence intervals, and can alleviate the difficulty of
analytic calculations when the pdf for the block diagram is a mixture (Figure 3)
and hence analytically more difficult to work with.

Reliability for System

_, _

_ d

o
d

1 2 3 4 5

Time Cuts

Empirical Mixture pdf for Block Diagram

Time

Figure 3: Reliability Curve for Block Diagram; pdf for Block Diagram

SIMPLE EVENT TREES

We began the study of the application of semi-Markov processes to event
tees with the simple flow diagram shown in Figure 4.
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Figure 4: The simple event tree flowdiagram.

Event tree models are such that there are two primary paths through the
flow diagram: a success path and a failure path. The transition times for the
success path are not random, whereas the transition times for the failure paths
are random. The study of correlation among inter-arrival times for the flow
diagram shown in Figure 4 is carried out both as a semi-Markov process (SMP)
in which the path is chosen by binomial distributions located at each node, while
the inter-arrival times are Weibull in nature, and a generalized semi-Markov
Process (GSMP) in which case the inter-arrival times compete to transition at
each node. In both cases the inter-arrival times for these models do not show
dependencies between inter-arrival times. This result indicates that there is a
fundamental difference between the block diagram and the event tree, and
motivates our desire to try a different approach to analyzing event trees.

A SIMPLE NASA EVENT TREE

We turn our focus to the analysis of a simple NASA-JSC event tree
representing a lunar mission (Figure 5, Table 5), and show how Monte-Carlo
simulation techniques can provide a more dynamic view of the probability
associated with each path, as well as capture underlying information associated
with node and inter-arrival time values.

TABLE 5: EVENT TREE TIMES
Time

Node Mission Events (min) Explanation of Event Times
BoosterLaunchWith

1 Payload 0.167 Fromengine ignitionto clearin9 the tower
Booster Ascent With

2 Payload 8.5 Tower clear to engine cutoff

From abort declaration to descent (abort declaration
3 Launch Abort 10 could be anywhere during ascent)
4 Payload Orbit Insertion 2 Orbital engine burn time
5 Mission In Orbit 7200
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Maximum time from declaration of abort to orbital
Mission Abort And Return engine burn

7 Deorbit Burn 2 Orbital engine burn time (deorbit)
8 Vehicle Entry 60 Vehicle entry from engine burn to below Mach 1
9 Vehicle Descent 10 Mach 1 to final approach
10 Vehicle Landing 2 Final approach, landing, and rollout

Booster Booster Mission

Launch Ascent Payload Abort
With With Launch Orbit Mission And Deorbit Vehicle Vehicle Vehicle

Payload Payload Abort Insertion In Orbit Return Barn Entry Descent Landing
Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8 Event 9 Event 10

0.99 0.97 0.5 0.999 0.999 0.9 0.999 0.999 0.9999 0.99
o a_ o_o3 a_ss3397 o9se_e3e oa_7421_ ogss=_s_a o:J_s_e_12 e_0_22z

a_ r o91 Ya,g 9 ' o99s y ogs_ _ ogs_ t o_ MS

o_gss3_e_

Lo
9_4SSE_

_ ,e _ LC

a_57422

No_ LG

e_l_e_

ro_ LG

, o_ LG

LG

_a4s

LC

O._lles
LC

Figure 5: A simple NASA event tree; MS : mission success, LC = loss of crew,
MFCS = mission fails, crew survives.
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The interpretation of the event tree as a flowgraph results in figure 6.

Figure 6: Flowgraph of Event Tree

The 25 paths (Table 6) associated with the flowgraph of the event tree are
simulated in a process by which the probabilities provided on the tree diagram
are used to calculate the number of simulations needed for each path. Note that
12 millions simulations are required to ensure that the relatively unlikely paths
(path 8 and path 14) will be represented at least once in the simulation.

TABLE 6: PATHS THROUGH THE FLOW DIAGRAM

Number
Path Nodes Simulations

1 1 2 4 5 7 8 9 10 CS 11,361,663
2 1 2 4 5 7 8 9 10 LC 114,764
3 1 2 4 5 7 8 9 LC 1,148
4 1 2 4 5 7 8 LC 11,489
5 1 2 4 5 7 LC 11,501
6 1 2 4 5 6 7 8 9 10 CS 10,236
7 1 2 4 5 6 7 8 9 10 LC 103
8 1 2 4 5 6 7 8 9 LC 1
9 1 2 4 5 6 7 8 LC i0

10 1 2 4 5 6 7 LC 10
11 1 2 4 5 6 LC 1,151
12 1 2 4 6 7 8 9 10 CS 10,246
13 1 2 4 6 7 8 9 10 LC 103
14 1 2 4 6 7 8 9 LC 1
15 1 2 4 6 7 8 LC 10
16 1 2 4 6 7 LC 10

1 2 4 6 LC 1,152
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18 t 2 3 9 10 CS 176,400
19 1 2 3 9 10 LC 1,782
2O 1 2 3 9 LC 18

21 1 2 3 LC 178,200
22 1 3 9 10 CS 59,394
23 1 3 9 10 LC 600
24 1 3 9 LC 6

25 1 3 LC 60,000

Furthermore, the event tree times provided in Table 5 are used to construct
shape and scale parameters for the inter-arrival times along each path. The
shape parameters are chosen to either be 2 along an event to failure (such as a
mission abort) or 200 along an event to success. The scale parameter for inter-
arrival times associated with success were taken to be the time to events in
Table 5, or ½ the time to events in Table 5 for failure events. This was done in
order to concentrate the mass of the success distribution more or less at the
point in time at which success is to occur, while failure is more spread out over
the entire time interval.

The simulation program uses the inter-arrival times, in conjunction with the
present node location to construct the probability mass function (pmf) for the
distribution of end states, MS = Mission Success, LC = Loss of Crew, MFCS =
Mission Fails, Crew Survives, along 10 equally spaced time slices of the possible
inter-arrival times for a given node. Given that there are 10 time slices, we
generate 10 pmf's for each of the 10 nodes and display the pmf's as a continuum
for each node. For sake of brevity in this report, we only show the results for a
particular node - node 1. Figure 6 shows the change in the pmf for the 10 time
slices along the inter-arrival times for node 1. We see a re-apportionment of the
total probability among the three end states as time evolved. Practically
speaking, this means that if we can accurately construct the distributions of
failure times along a tree diagram, then this dynamic approach to risk
assessment will allow us to update our probability of success based on two
observations - the present node, and the time elapsed since entering the present
node.
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P.M.F, for Mission Success Conditioned on Time Spent at Node 1

0.0 0.05 0.10 0.15 0.2o o.25

time

P.MF. for Loss of Crew Conditioned on Time Spent at Node 1

0.0 o.05 0.10 0.15 0,20 0.25

11me

P.M.F. for Mission Failure-Crew Survives Conditioned on Time Spent at Node 1

f
o.o o.o5 o.1o o.15 0.2o 0.25

Ume

Number at Risk at Node 1

o.o o.o5 O,lO 0.15 0.20 0.25

[ln_e

Figure 6: Simulation of pmf for node 1 as time evolves.

The simulation that generated Figure 6 is one in which the probability of
ending at a particular node is empirically computed for 10 discrete time intervals,
t_,i = 1, ..., 10, on the range of inter-arrival times for node ] by considering only
those simulations that have not failed at ti. In effect,

Pr(MSIt_+I> t > t_,node 1)= n(MSIt_) / [n(MSIt_) +n(MFCSIti) +n(LC Its)], i = 1,...,9.
Graphics for the other 9 nodes are constructed in a similar manner.

The simulation performed is somewhat contrived in that it requires the
distribution of inter-arrival times be known, and if these inter-arrival times are
known, then the pmf can be computed analytically as

Pr(MSItl.2 > t_) = Pr(T > t,.2 > t,)P=.,P<sPs.,PT.sPs.gPgaoP_oMs.

where t_.2= the fixed time for the node 2 to be achieved along the path to
mission success,

. T = the Weibull distributed random variable for the time to failure at node 1,

P_.j= the specified probability of transfer between nodes i and j.
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Although contrived, the simulation does carry out two important tasks in that it
lays the foundation for a simulation of a GSMP, and it shows the effect of time in
the analysis of reliability of the event tree.

The improvement one gets by using the semi-Markov model for an event
tree diagram is that the end states now depend upon time. This means that the
end state probabilities fluctuate with time and so, for example, if one end state is
"loss of crew", then it can happen that the probability that the crew is lost can be
high early in the mission, but small late in the mission.

CONCLUSIONS

The study has shown several results of interest to reliability studies at
NASA-JSC:

1) Evidence is found to show that correlation between inter-arrival times
exists for the general block diagram. This correlation is shown to be difficult to
exploit using classical predictive models, and therefore it is suggested that
simulation will provide a superior estimate of the distribution of time to failure for
the system. It is suggested that each fault tree component of an event tree may
be analyzed by the simulation technique, which would provide an empirical pdf
for each node of the event tree.

2) Attempts should be made to incorporate the GSMP approach to modeling
the event tree. Unless all success events within an event tree are precisely
timed and executed such that they effectively have no variance in time, then the
GSMP is a more natural modeling assumption.

3) The event tree simulation should be replicated, say 50 times, in order to
allow confidence intervals to be placed on the time dependent pmf presented in
the study.
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